Files of a 5*2^n VHDL entity using Winograd5 and radix2 implementations
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

260 lines
14KB

  1. LIBRARY ieee;
  2. USE ieee.std_logic_1164.ALL;
  3. USE ieee.std_logic_signed.ALL;
  4. USE ieee.numeric_std.ALL;
  5. USE work.FIVEn_DFT_PKG.ALL;
  6. USE work.coeff.ALL;
  7. ENTITY FFT_tree IS
  8. PORT(
  9. i_clk : IN std_logic;
  10. i_data_re : IN vect_dft_input;
  11. i_data_im : IN vect_dft_input;
  12. o_data_re : OUT vect_dft_output;
  13. o_data_im : OUT vect_dft_output
  14. );
  15. END FFT_tree;
  16. ARCHITECTURE instanciating_cells OF FFT_tree IS
  17. SIGNAL cos_k_pi_over_5 : vect_cos_sin_k_pi_over_5_32b := ("01000000000000000000000000000000", "00110011110001101110111100110111", "00010011110001101110111100110111", "11101100001110010001000011001001", "11001100001110010001000011001001"); -- coeffs multiplied by 2^30
  18. SIGNAL sin_k_pi_over_5 : vect_cos_sin_k_pi_over_5_32b := ("00000000000000000000000000000000", "11011010011000011011100111110111", "11000011001000011110001111011001", "11000011001000011110001111011001", "11011010011000011011100111110111"); -- coeffs multiplied by 2^30
  19. -- purpose: give the proper arrangement for the winograd5 blks
  20. -- the right order: even numbers then odd numbers. The even numbers are the
  21. -- result of others even_odd order multiplied by 2, the odd numbers are the
  22. -- result of others even_odd order multiplied by 2+1.
  23. -- input: the nth winograd5 instance when sort
  24. -- output: the corresponding winograd5 instance number when sort
  25. FUNCTION rearrange (
  26. i : IN natural)
  27. RETURN natural IS
  28. TYPE vect_rearrange IS ARRAY (0 TO cst_nb_samples_in_5ndft) OF natural;
  29. TYPE matrix_rearrange IS ARRAY (0 TO cst_log2_nb_parallel_winograd5) OF vect_rearrange;
  30. VARIABLE matrix_affect_rearrange : matrix_rearrange := (OTHERS => (OTHERS => 0));
  31. BEGIN -- FUNCTION rearrange
  32. IF cst_log2_nb_parallel_winograd5 > 0 THEN
  33. matrix_affect_rearrange(1)(1) := 1;
  34. FOR stage IN 2 TO cst_log2_nb_parallel_winograd5 LOOP
  35. FOR i IN 0 TO 2**(stage-1)-1 LOOP
  36. matrix_affect_rearrange(stage)(i) := matrix_affect_rearrange(stage-1)(i)*2;
  37. matrix_affect_rearrange(stage)(i+2**(stage-1)) := matrix_affect_rearrange(stage-1)(i)*2+1;
  38. END LOOP; -- i
  39. END LOOP; -- stage
  40. RETURN matrix_affect_rearrange(cst_log2_nb_parallel_winograd5)(i);
  41. ELSE
  42. RETURN 0;
  43. END IF;
  44. END FUNCTION rearrange;
  45. TYPE matrix_input_winograd5_5ndft IS ARRAY (0 TO cst_nb_parallel_winograd5-1) OF vect_input_winograd5_5ndft;
  46. TYPE matrix_output_winograd5_5ndft IS ARRAY (0 TO cst_nb_parallel_winograd5-1) OF vect_output_winograd5_5ndft;
  47. SIGNAL cos_k_pi_over_5_wb : vect_cos_sin_k_pi_over_5_wb := (OTHERS => (OTHERS => '0'));
  48. SIGNAL sin_k_pi_over_5_wb : vect_cos_sin_k_pi_over_5_wb := (OTHERS => (OTHERS => '0'));
  49. SIGNAL data_out_winograd5_re : vect_total_output_winograd5_cells := (OTHERS => (OTHERS => '0'));
  50. SIGNAL data_out_winograd5_im : vect_total_output_winograd5_cells := (OTHERS => (OTHERS => '0'));
  51. SIGNAL winograd_rearranged_input_re : vect_dft_input := (OTHERS => (OTHERS => '0'));
  52. SIGNAL winograd_rearranged_input_im : vect_dft_input := (OTHERS => (OTHERS => '0'));
  53. SIGNAL matrix_inputs_outputs_radix2_cells_re : matrix_fft_stages := (OTHERS => (OTHERS => (OTHERS => '0')));
  54. SIGNAL matrix_inputs_outputs_radix2_cells_im : matrix_fft_stages := (OTHERS => (OTHERS => (OTHERS => '0')));
  55. SIGNAL vect_input_1_cell_winograd5_re : matrix_input_winograd5_5ndft := (OTHERS => (OTHERS => (OTHERS => '0')));
  56. SIGNAL vect_input_1_cell_winograd5_im : matrix_input_winograd5_5ndft := (OTHERS => (OTHERS => (OTHERS => '0')));
  57. SIGNAL vect_output_1_cell_winograd5_re : matrix_output_winograd5_5ndft := (OTHERS => (OTHERS => (OTHERS => '0')));
  58. SIGNAL vect_output_1_cell_winograd5_im : matrix_output_winograd5_5ndft := (OTHERS => (OTHERS => (OTHERS => '0')));
  59. BEGIN -- ARCHITECTURE instanciating_cells
  60. -- coeffs cut
  61. -- purpose: Rounds the data in 32bits into cst_w_precision_radix2_coeffs_5ndft bits (round for
  62. -- MSBs). Should run and cut before simulation and bitstream
  63. -- inputs : the coeffs to be cut sin_k_pi_over_5, cos_k_pi_over_5, sin_k_pi_over_80, cos_k_pi_over_80
  64. -- outputs: the cut coeffs cos_k_pi_over_5_wb, sin_k_pi_over_5_wb, sin_k_pi_over_80_wb, cos_k_pi_over_80_wb
  65. mult_coeffs_cut : PROCESS(sin_k_pi_over_5, cos_k_pi_over_5)
  66. BEGIN
  67. FOR i IN 0 TO 4 LOOP
  68. cos_k_pi_over_5_wb(i) <= cos_k_pi_over_5(i)(31 DOWNTO 32-cst_w_precision_radix2_coeffs_5ndft);
  69. sin_k_pi_over_5_wb(i) <= sin_k_pi_over_5(i)(31 DOWNTO 32-cst_w_precision_radix2_coeffs_5ndft);
  70. IF(cos_k_pi_over_5(i)(32-cst_w_precision_radix2_coeffs_5ndft-1) = '1') THEN
  71. cos_k_pi_over_5_wb(i) <= std_logic_vector(unsigned(signed(cos_k_pi_over_5(i)(31 DOWNTO 32-cst_w_precision_radix2_coeffs_5ndft))+1));
  72. END IF;
  73. IF(sin_k_pi_over_5(i)(32-cst_w_precision_radix2_coeffs_5ndft-1) = '1') THEN
  74. sin_k_pi_over_5_wb(i) <= std_logic_vector(unsigned(signed(sin_k_pi_over_5(i)(31 DOWNTO 32-cst_w_precision_radix2_coeffs_5ndft))+1));
  75. END IF;
  76. END LOOP; -- i
  77. END PROCESS mult_coeffs_cut;
  78. -- inputs rearranging
  79. -- purpose: affects inputs on their right way (cf. schema and explanations)
  80. -- using the rearrange(i) function, which creates the right winograd
  81. -- instances numbers order. Rearranging inputs order is equivalent to rearranging
  82. -- winograd5 order.
  83. -- inputs: i_data_re, i_data_im
  84. -- outputs: winograd_rearranged_input_re, winograd_rearranged_input_im
  85. rearrange_winograd_input : FOR i IN 0 TO cst_nb_parallel_winograd5-1 GENERATE
  86. five_inputs : FOR j IN 0 TO 4 GENERATE
  87. winograd_rearranged_input_re(rearrange(i => i)*5+j) <= i_data_re(j*cst_nb_parallel_winograd5+i);
  88. winograd_rearranged_input_im(rearrange(i => i)*5+j) <= i_data_im(j*cst_nb_parallel_winograd5+i);
  89. END GENERATE five_inputs;
  90. END GENERATE rearrange_winograd_input;
  91. -- winograd instanciating
  92. -- purpose: wiring; instanciates the parallel winograd stage with their correct inputs and outputs
  93. -- inputs: winograd_rearranged_input_im, winograd_rearranged_input_re (length
  94. -- cst_nb_samples_in_5ndft each, cut then into subvectors of 5 inputs)
  95. -- instances: WINOGRAD5(Behavioral)
  96. -- outputs: vect_output_1_cell_winograd5_im, vect_output_1_cell_winograd5_re
  97. -- (length cst_nb_samples_in_5ndft each, cut then into subvectors of 5 inputs)
  98. winograd5_instances : FOR i IN 0 TO cst_nb_parallel_winograd5-1 GENERATE
  99. fill_for : FOR j IN 0 TO 4 GENERATE
  100. vect_input_1_cell_winograd5_im(i)(j) <= winograd_rearranged_input_im(j+5*i);
  101. vect_input_1_cell_winograd5_re(i)(j) <= winograd_rearranged_input_re(j+5*i);
  102. data_out_winograd5_im(j+5*i) <= vect_output_1_cell_winograd5_im(i)(j);
  103. data_out_winograd5_re(j+5*i) <= vect_output_1_cell_winograd5_re(i)(j);
  104. END GENERATE fill_for;
  105. winograd5_inst : ENTITY work.WINOGRAD5(Behavioral)
  106. PORT MAP(
  107. i_clk => i_clk,
  108. i_data_im => vect_input_1_cell_winograd5_im(i),
  109. i_data_re => vect_input_1_cell_winograd5_re(i),
  110. o_data_im => vect_output_1_cell_winograd5_im(i),
  111. o_data_re => vect_output_1_cell_winograd5_re(i)
  112. );
  113. END GENERATE winograd5_instances;
  114. -- winograd results
  115. -- purpose: fill the 0th stage (input stage) of the matrix instanciating the
  116. -- butterfly (radix2) cells only.
  117. -- inputs: data_out_winograd5_re, data_out_winograd5_im
  118. -- outputs: matrix_inputs_outputs_radix2_cells_re(x)(0), matrix_inputs_outputs_radix2_cells_im(x)(0)
  119. fill_radix2_cells_input_matrix : FOR i IN 0 TO cst_nb_samples_in_5ndft-1 GENERATE
  120. matrix_inputs_outputs_radix2_cells_re(i)(0)(cst_winograd5_w_out_5ndft-1 DOWNTO 0) <= data_out_winograd5_re(i);
  121. matrix_inputs_outputs_radix2_cells_im(i)(0)(cst_winograd5_w_out_5ndft-1 DOWNTO 0) <= data_out_winograd5_im(i);
  122. END GENERATE fill_radix2_cells_input_matrix;
  123. -- purpose: instanciates the first butterfly cells stage (after the winograd
  124. -- results). If there is only 1 parallel winograd5 cell, couple_winograd5_nb
  125. -- will not be use between 0 and -1, so the FOR loop will no execute
  126. -- inputs: matrix_inputs_outputs_radix2_cells_re(x)(0), matrix_inputs_outputs_radix2_cells_im(x)(0)
  127. -- instances: radix_2_cell_winograd(radix2)
  128. -- outputs: matrix_inputs_outputs_radix2_cells_re(x)(1), matrix_inputs_outputs_radix2_cells_im(x)(1)
  129. radix2_cells_stage1 : FOR couple_winograd5_nb IN 0 TO cst_nb_parallel_winograd5/2-1 GENERATE
  130. radix2_winograd_out : FOR i IN 0 TO 4 GENERATE
  131. radix_2_out_winograd_inst : ENTITY work.radix_2_cell_winograd(radix2)
  132. GENERIC MAP(
  133. w_in => cst_winograd5_w_out_5ndft
  134. )
  135. PORT MAP(
  136. i_clk => i_clk,
  137. i_cos => cos_k_pi_over_5_wb(i MOD 5),
  138. i_sin => sin_k_pi_over_5_wb(i MOD 5),
  139. i_data1_re => matrix_inputs_outputs_radix2_cells_re(couple_winograd5_nb*10+i)(0),
  140. i_data1_im => matrix_inputs_outputs_radix2_cells_im(couple_winograd5_nb*10+i)(0),
  141. i_data2_re => matrix_inputs_outputs_radix2_cells_re(couple_winograd5_nb*10+i+5)(0),
  142. i_data2_im => matrix_inputs_outputs_radix2_cells_im(couple_winograd5_nb*10+i+5)(0),
  143. o_data1_re => matrix_inputs_outputs_radix2_cells_re(couple_winograd5_nb*10+i)(1),
  144. o_data1_im => matrix_inputs_outputs_radix2_cells_im(couple_winograd5_nb*10+i)(1),
  145. o_data2_re => matrix_inputs_outputs_radix2_cells_re(couple_winograd5_nb*10+i+5)(1),
  146. o_data2_im => matrix_inputs_outputs_radix2_cells_im(couple_winograd5_nb*10+i+5)(1)
  147. );
  148. END GENERATE radix2_winograd_out;
  149. END GENERATE radix2_cells_stage1;
  150. -- radix2 cells instanciation
  151. -- purpose: instanciates all the butterfly stages (except stage 1). The
  152. -- stages are filled decrementing the stage number
  153. -- inputs: matrix_inputs_outputs_radix2_cells_re(x)(1), matrix_inputs_outputs_radix2_cells_im(x)(1)
  154. -- instances: radix_2_cell_winograd(radix2)
  155. -- outputs: matrix_inputs_outputs_radix2_cells_re(x)(cst_log2_nb_parallel_winograd5), matrix_inputs_outputs_radix2_cells_im(x)(cst_log2_nb_parallel_winograd5)
  156. stages_generation : FOR stage IN 1 TO cst_log2_nb_parallel_winograd5-1 GENERATE
  157. k10_blocks : FOR cell_10_nb IN 1 TO 2**(stage-1) GENERATE
  158. parallel_cells : FOR cell_nb IN (cst_nb_samples_in_5ndft/(2**stage))*(cell_10_nb-1) TO (cst_nb_samples_in_5ndft/(2**stage))*(cell_10_nb)-1 GENERATE
  159. radix_2_generic_inst : ENTITY work.radix_2_cell_winograd(radix2)
  160. GENERIC MAP(
  161. w_in => cst_winograd5_w_out_5ndft+(cst_log2_nb_parallel_winograd5-stage)*cst_w_radix2_added
  162. )
  163. PORT MAP(
  164. i_clk => i_clk,
  165. i_cos => cos_k_pi_over_n_wb((cst_nb_wn_coeffs/10/(2**(cst_log2_nb_parallel_winograd5-stage-1))*cell_nb) MOD cst_nb_wn_coeffs),
  166. i_sin => sin_k_pi_over_n_wb((cst_nb_wn_coeffs/10/(2**(cst_log2_nb_parallel_winograd5-stage-1))*cell_nb) MOD cst_nb_wn_coeffs),
  167. i_data1_re => matrix_inputs_outputs_radix2_cells_re(cell_nb)(cst_log2_nb_parallel_winograd5-stage),
  168. i_data1_im => matrix_inputs_outputs_radix2_cells_im(cell_nb)(cst_log2_nb_parallel_winograd5-stage),
  169. i_data2_re => matrix_inputs_outputs_radix2_cells_re(cell_nb+(cst_nb_samples_in_5ndft/(2**stage)))(cst_log2_nb_parallel_winograd5-stage),
  170. i_data2_im => matrix_inputs_outputs_radix2_cells_im(cell_nb+(cst_nb_samples_in_5ndft/(2**stage)))(cst_log2_nb_parallel_winograd5-stage),
  171. o_data1_re => matrix_inputs_outputs_radix2_cells_re(cell_nb)(cst_log2_nb_parallel_winograd5-stage+1),
  172. o_data1_im => matrix_inputs_outputs_radix2_cells_im(cell_nb)(cst_log2_nb_parallel_winograd5-stage+1),
  173. o_data2_re => matrix_inputs_outputs_radix2_cells_re(cell_nb+(cst_nb_samples_in_5ndft/(2**stage)))(cst_log2_nb_parallel_winograd5-stage+1),
  174. o_data2_im => matrix_inputs_outputs_radix2_cells_im(cell_nb+(cst_nb_samples_in_5ndft/(2**stage)))(cst_log2_nb_parallel_winograd5-stage+1)
  175. );
  176. END GENERATE parallel_cells;
  177. END GENERATE k10_blocks;
  178. END GENERATE stages_generation;
  179. -- output results
  180. -- purpose: rounds the outputs to have cst_w_out_5ndft bits. Does not round
  181. -- if cst_w_out_5ndft = cst_dft_w_out_5ndft
  182. -- type : sequential
  183. -- inputs : i_clk, matrix_inputs_outputs_radix2_cells_re, matrix_inputs_outputs_radix2_cells_im
  184. -- outputs: o_data_re, i_data_im
  185. output_rounding : PROCESS (i_clk) IS
  186. BEGIN -- PROCESS output_rounding
  187. IF rising_edge(i_clk) THEN -- rising clock edge
  188. FOR i IN 0 TO cst_nb_samples_in_5ndft-1 LOOP
  189. IF(matrix_inputs_outputs_radix2_cells_re(i)(cst_log2_nb_parallel_winograd5)(cst_dft_w_out_5ndft-24-cst_w_out_5ndft) = '1' AND cst_w_out_5ndft < cst_dft_w_out_5ndft) THEN
  190. o_data_re(i) <= std_logic_vector(unsigned(signed(matrix_inputs_outputs_radix2_cells_re(i)(cst_log2_nb_parallel_winograd5)(cst_dft_w_out_5ndft-24 DOWNTO cst_dft_w_out_5ndft-23-cst_w_out_5ndft))+1));
  191. ELSE
  192. o_data_re(i) <= matrix_inputs_outputs_radix2_cells_re(i)(cst_log2_nb_parallel_winograd5)(cst_dft_w_out_5ndft-24 DOWNTO cst_dft_w_out_5ndft-23-cst_w_out_5ndft);
  193. END IF;
  194. IF(matrix_inputs_outputs_radix2_cells_im(i)(cst_log2_nb_parallel_winograd5)(cst_dft_w_out_5ndft-24-cst_w_out_5ndft) = '1' AND cst_w_out_5ndft < cst_dft_w_out_5ndft) THEN
  195. o_data_im(i) <= std_logic_vector(unsigned(signed(matrix_inputs_outputs_radix2_cells_im(i)(cst_log2_nb_parallel_winograd5)(cst_dft_w_out_5ndft-24 DOWNTO cst_dft_w_out_5ndft-23-cst_w_out_5ndft))+1));
  196. ELSE
  197. o_data_im(i) <= matrix_inputs_outputs_radix2_cells_im(i)(cst_log2_nb_parallel_winograd5)(cst_dft_w_out_5ndft-24 DOWNTO cst_dft_w_out_5ndft-23-cst_w_out_5ndft);
  198. END IF;
  199. END LOOP; -- i
  200. END IF;
  201. END PROCESS output_rounding;
  202. -- if you prefer the whole result, uncomment this section and comment the
  203. -- output_rounding process above. You should also change smpl_out_5ndft from
  204. -- cst_w_out_5ndft to cst_dft_w_out_5ndft (line 32 in FIVEn_dft_pkg).
  205. --fill_outputs : FOR i IN 0 TO cst_nb_samples_in_5ndft-1 GENERATE
  206. -- o_data_re(i) <= matrix_inputs_outputs_radix2_cells_re(i)(cst_log2_nb_parallel_winograd5);
  207. -- o_data_im(i) <= matrix_inputs_outputs_radix2_cells_im(i)(cst_log2_nb_parallel_winograd5);
  208. --END GENERATE fill_outputs;
  209. END ARCHITECTURE instanciating_cells;